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1 Introduction
Lateral Transshipment (LT) is the transfer of items be-
tween service centers on same echelon. Research on
multi-echelon inventory systems with Lateral Trans-
shipment (LT) is mainly motivated by firms in the
manufacturing industries where the desire exists to
simultaneously minimise cost and improve service.
Cost minimisation and service improvement are two
desirable but contrasting objectives in service parts
supply systems. The importance of having an appro-
priate inventory policy cannot be overemphasized [1].
The objective of cost minimisation could lead to re-
duction in customer service level, while the objective
of service improvement could lead to increase in total
system costs. Thus, decision makers need to always
strike the right balance between these two contrast-
ing objectives. This will help to prevent instances
where minimising cost results to deteriorating cus-
tomer service, or instanceswhere improving customer
service results to shrinking profit margins due to ris-
ing system costs. Consequently, in order for the sys-
tem to remain sustainable, the decision maker is re-
quired to always make accurate or near accurate de-
cisions. This highlights the need for continuous re-
search on more efficient means of balancing the con-
flicting objectives of service improvement and cost
minimisation. This study explores the use of LT as a
means to achieving a balance between cost minimisa-
tion and service improvement for an inventory system

with service consideration in a two-echelon arena.
This work is applicable in spare parts supply chain,

especially for firms that deal with parts which are ex-
pensive and slow moving. Here, an order for a spare
part from a customer also implies that the customer is
desperate and needs to get his machine to full func-
tionality as soon as possible. The sensitivity of cus-
tomers to service time imply that in order to retain
customers, spare parts dealers would continually seek
means to lower inventory costs without violating their
customers’ waiting time preferences.

The consequences of using LT has been studied
for many multi echelon environments. However, the
use of LT in an inventory system with uniform ser-
vice constraint across all lower echelon facilities in
a two-echelon environment has not been considered
extensively. [2], [3], [4], [5] and [6] are some two-
echelon inventory systems with service considera-
tions for which the effect of LT is yet to be studied.
Thus, this study was designed to integrate LT into a
two-echelon inventory system with uniform service
consideration across all service centers. This work
can be treated as a natural extension of the work by
[2], the integration of LT leads to a change in ex-
pressions for steady state levels of inventory on hand
and backorder. In this study, the service constraint or
service consideration is a common threshold for re-
sponse times across all service centers. A measure
of the system’s service quality is the waiting time of
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customers, thus, our service constraint demands that
waiting time does not exceed a given threshold. This
follows because generally, customers desire to have
short service times for service parts. The desire to
minimise cost is taken care of by the system’s objec-
tive function. Thus, we aim to determine an inventory
policy that minimises system wide costs for a two-
echelon inventory system with LT, subject to a con-
straint on response time.

Our two-echelon inventory system is made up of
a set of Service Centers (SVCs) at the lower echelon
and the top echelon consists of a single plant. A Ser-
vice Center (SVC) satisfies demand from geographi-
cally spaced customers, while the plant produces and
stores items to replenish SVC stock. The SVCs are
divided into pools such that LT is allowed only be-
tween SVCs in the same pool. Customer demand at
each SVC is met from on hand inventory if the SVC
has available stock. If the SVC has a stockout occur-
rence, the demand is satisfied by LT from a SVC in
same pool. Demand is backordered if all SVCs in the
pool are out of stock. The sensitivity of customers
to response times makes LT a more preferable option
than direct shipment from plant. This is because a
SVC which runs out of stock may be closer to other
nearby SVCs than the plant, thus, satisfying incom-
ing demands via LT might be quicker than satisfying
them via direct shipment from plant.

This study is a fusion of two major areas: (i) two-
echelon inventory problems with service considera-
tion and (ii) lateral transshipment. The use of time-
based service constraints have been considered in the
literature of inventory systems with two echelons. [2]
considered a two-echelon model with service con-
straint, which controlled inventory at both echelons
using (S-1,S) policies. They imposed an upper bound
on the expected response time and created efficient al-
gorithms to minimise stock related costs at both ech-
elons. [7] studied a two-echelon problem on inven-
tory location that incorporated service consideration.
They modelled the manufacturing process as a queue
and formulated a nonlinear mixed integer problem.
They solved the problem using a Lagrange heuristic.
[8] considered an inventory model with a service con-
straint which gave a threshold for backorder. Their
model resulted to efficient convex curve for back-
order costs on application of marginal analysis and
greedy algorithm. [9] considered the network for ser-
vice parts logistics of an aerospace firm with service
requirements. Their service requirements resulted
to service constraints which were highly stochastic
and non-linear. They presented a solution procedure
which was exact. They also presented a new de-
composition scheme. Their procedure could handle
cases having 60 items in reasonable time. [10] in-
vestigated scenarios in the utility industry where ser-

vice measures go beyond availability of parts to con-
sider the effect of utility downtime on customers. [11]
considered inventory models with stochastic service
constraints. All the papers mentioned so far consid-
ered inventory systems with service constraints; the
non-inclusion of lateral transshipment is a noticeable
gap for the systems considered in these papers. This
makes it necessary to consider the incorporation of
lateral transshipment into such systems. In this study,
we focus on system wide service constraints.

There have been lots of literature that consider
inventory control with lateral transshipment. [12]
gives a well detailed review on lateral transshipments.
They classified transshipments into proactive and re-
active based on the time the lateral transshipments
occur. They further classified reactive transshipment
into two categories based on whether they are in cen-
tralised systems or decentralised systems. Most mod-
els with centralised systems [13], [14], [15], [16]
and [17] assumed negligible transshipment times and
found that lateral transshipments improved the sys-
tem performance. [13] analysed a two-echelon inven-
tory system controlled with continuous review base
stock policy. The system considered had identical
bases and assumed negligible transshipment. De-
mand occurred due to part failure, and the demand
arrival process was assumed to be a Poisson process.
Demand is satisfied by on-hand inventory or lateral
transshipments in a stock out situation. The demand
fraction satisfied from on-hand inventory and the de-
mand fraction satisfied by LT were evaluated follow-
ing three rules for the selection of LT source: random
selection, maximum on-hand inventory, and smallest
number of outstanding orders. The study found no
significant difference in the performance of the three
transshipment rules and that LT led to substantial cost
savings because less base stocks were needed at the
bases. [14] relaxed the assumption of identical fa-
cilities and presented better methods for determining
approximate service levels. The model by [14] was
extended by [15] who allowed emergency shipments
from a central warehouse and amanufacturing facility
such that no demand was backordered. They found
that the use of LT and the flexibility of direct ship-
ment resulted in significant reduction of cost com-
pared with using no supply flexibility at all. [16]
and [17] conducted simulation studies for negligible
transshipment times and showed that a policy which
permitted LT performed better than one without lat-
eral transshipments if the benefits of avoiding facil-
ity stock out dominated the additional costs resulting
from transshipments. On the other hand, some stud-
ies ([18], [19], [20], [21]) considered nonnegligible
LT times in their models.

Another practical feature which is considered
within a spare parts model is time based service lev-
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els, where targeted proportions of demand are to be
satisfied within a certain time period. [22] considered
a system with time based service level. They pointed
out that in service parts system, time-based service
requirements are more appropriate than fill rates, and
that the performance of response times improved with
LT. [23] considered a service parts location inven-
tory problem with flexible replenishment stock and
LT. They proposed a service measure which was cus-
tomer oriented. They also provided an approximation
for optimising inventory allocation subject to the this
measure. However their response time measure did
not cater for demand not met by inventory on hand or
LT. The service measures considered by [22] and [23]
only considered a fraction of total system demand.
Thus, it was possible that a certain fraction of demand
might not be satisfied within the time threshold for
service. This makes it necessary to examine service
measures which guarantee the satisfaction of all cus-
tomers. The service constraints in this study consider
all customers, thus our constraints differ greatly from
those of [23] and [22]. [24] extensively reviewed lit-
erature on system-oriented inventory systems. They
reviewed systems with service level constraints and
systems with LT. From [12], [24], and other studies
mentioned so far, there is scarcity of literature on the
incorporation of LT into a two echelon inventory sys-
tem with service constraint (response time require-
ment).

[2] used the (S-1, S) policy to control inventory
and presented the steady state relationship between
on-hand inventory and backorder for a two-echelon
system with service constraint. This study extends
their work by developing an inventory policy that in-
corporates LT. This was done via derivation of the
steady state relationship between on-hand inventory,
LT, and backorder. We also derive approximations
for on-hand inventory, LT, and backorder using MET-
RIC approximation [25]. The service constraint con-
sidered is a single response time threshold across all
facilities in the lower echelon. Thus, this study es-
tablished a significant contribution by enhancing the
literature on two-echelon systems via the incorpora-
tion of lateral transshipment into a centralised two-
echelon location-inventory system with finite number
of facilities at the lower echelon and response time re-
quirement across all facilities. We introduce a new
model and also introduce steady state relationships
and optimal policies for the new system.

The structure of this paper is as follows. In Sec-
tion 1, the introduction is presented. In Section 2, we
present the model description and formulation, and
also determine the steady state expected levels for in-
ventory, LT and backorder. In Section 3, some prop-
erties of the model are presented. In Section 4, com-
putational experiments are presented. In Section 5 we

present our conclusion.

2 Model description and
Formulation

The two-echelon inventory system considered in this
study is made up of a plant at the top echelon and a
set of Service Centers (SVCs) at the lower echelon.
A Service Center (SVC) satisfies demand from ge-
ographically spaced customers, while the plant pro-
duces and stores items to replenish SVC stock. In this
section we give a description of the system, introduce
the basic notations, and present the basic model for-
mulation.

2.1 System description and notations
1. The item (spare part) is manufactured and stored

at the plant to fulfil resupply requests from SVCs
within a SVC specific response time.

2. Arrival of orders at a SVC are independent and
follow a Poisson process. Customer orders are
satisfied at the SVCs.

3. We use a (S-1, 1) policy to control inventory
at both echelons. This follows because [26]
showed that (S-1,S) policies are appropriate for
slow moving items. This study deals with a slow
moving and expensive single item inventory.

4. If a SVC has positive stock level, it immediately
satisfies its arriving customer orders and instantly
sends replenishment requests to the plant.

5. If stock level at a SVC (SVC A) is non-positive
and there exists one or more pooled SVCs with
positive stock level, then a demand arriving at
SVC A is satisfied instantaneously via LT from
any of its pooled SVCs with positive stock level.

6. If all SVCs in a pool have non-positive stock lev-
els, then demand arrival at any SVC in that pool
will be backordered.

7. Customer demand at a SVC are satisfied via any
of the following: on hand stock, LT or backorder.

8. We assume negligible LT times. This implies
that all demands satisfied from on-hand stock at
a SVC or via LT were satisfied instantaneously.
Thus, demand is backordered if and only if the
entire pool is out of stock. Hence, the customer’s
waiting time can be constrained by putting a
bound on the backorder time. The waiting time
includes the deterministic plant to SVC trans-
portation time and any delay at the plant.
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9. If the plant has positive stock level, it fulfills re-
plenishment request from a SVC on arrival, and
instantly sends a production order to its produc-
tion line.

10. If the plant has non-positive stock level, replen-
ishment requests from the SVCs are backordered.

11. The finished products from the plant’s produc-
tion line are stored as inventory or used to sat-
isfy backorders as soon as the production process
ends. We assume finite servers at the production
line, where each server has an exponential ser-
vice rate and processes one unit at a time. Con-
trolling each SVCwith the (S-1,S) policy implies
that replenishment requests at the plant arrive one
at a time. Thus, the plant’s demand arrival pro-
cess is Poisson and the plant possesses the prop-
erties of a Markovian queue.

12. All demand and replenishment requests are han-
dled in a First-Come,First-Served (FCFS)man-
ner.

The following are the costs considered in the sys-
tem:

1. cost of storing inventories at the plant and SVCs
(holding costs),

2. cost of backordering customer demand at a SVC
(backorder cost)

3. cost of satisfying demand via LT (LT cost)

Below, we present notations used in this study
Sets
Y = Set of SVCs
Z = Set of Pools

Parameters
hyz = Per unit holding cost at SVC y in pool z per
unit time
qyz= Per unit lateral transshipment at SVC y in pool
z
pyz = Per unit backorder cost at SVC y in pool z per
unit time
λyz = Demand rate at SVC y in pool z
λz = Demand rate at pool z =

∑
y∈Y λyz

λ0 = Demand rate at plant =
∑

z∈Z λz

τ = response time threshold
ρ = Plant utilisation rate(= λ0

µ )

µ = Plant order processing rate
αw = exact lead time from the plant to pool z
Cyz = Capacity available at SVC y in pool z, this is
uniform for all SVCs in pool z
Cz = |z|Cz = Pool z’s total capacity, where |z|
represents number of SVCs in pool z

C0 = Plant’s total storage capacity

Other Decision Variables
Syz is the required stock level at SVC y in pool z
Sz = |z|Syz is the required stock level at pool z
S0 is the plant’s required level of stock

Service Variables
Iyz = Expected inventory level in steady state for
SVC y in pool z
Iz =

∑
y∈Y Iyz = Pool z’s expected steady state

inventory level
Byz = Expected backorder level in steady state for
SVC y in pool z
Bz = Pool z’s expected backorder level in steady
state
Tyz = Expected LT level in steady state for SVC y in
pool z
Wtyz = Expected response time in steady state for
SVC y in pool z
I0 = Expected inventory level in steady state at the
plant
B0 = Expected backorder level in steady state at the
plant
Nyz(t) = Total replenishment orders by SVC y in
pool z yet to arrive by time t
Nz(t) = Total pool z replenishment orders yet to
arrive by time t.
N0(t) = Total plant replenishment orders yet to
arrive by time t.

2.2 Model formulation
The basic model formulation is given below.

min
∑
z∈Z

∑
y∈Y

(hyzIyz + pyzByz + qyzTyz) + h0I0

(1)
Subject to:

Syz ≤ Cyz, for each, y ∈ Y (2)
Sz ≤ |z|Cyz, for each, z ∈ Z (3)
S0 ≤ C0 (4)
Wtyz ≤ τ, for each, y ∈ Y (5)
Syz ≥ 0, integer, for each, y ∈ Y (6)
S0 ≥ 0 (7)

The objective (1) is to determine the minimum
sum of SVC inventory holding costs, backorder costs
at SVCs, LT costs and plant inventory holding costs.
Our system is centralised hence plant backorders
are considered internal to the system and not incur a
monetary cost. Constraints (2), (3) and (4) state that
SVCs, pools and plant stock levels cannot be greater
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than available storing capacity. From our service
constraints (5), the expected service time cannot
exceed the specified threshold. Finally, (6) and (7)
are nonnegativity constraints.

The total waiting time of a customer is a measure
of the system’s service quality, thus, our service con-
straint demands that waiting time does not exceed a
given threshold. This is similar to the service con-
straints found in [2], [7], and [27]. Generally, cus-
tomers desire to have short service times for service
parts. This is because they often desire to have their
failed equipments fixed in the shortest possible time.
We treat each SVC as queue system such that the ob-
jects passing through the systems are customer de-
mands [28]. The quantity of objects in line gives the
level of backorder, while, the entire time spent by ob-
ject till fulfillment of order gives the response time.
An application of Little’s law [29] results to the fol-
lowing:

Wtyz =
Byz

λyz
(8)

Hence, the service constraint can be rewritten as

Byz ≤ τλyz (9)

The basic form of the model does not give readily
give any information on the structure of the model. In
order to determine the problem structure, we need to
first determine the on-hand inventory level, LT level,
and backorder level for the model given S0 and Syz

respectively. We present this in the next subsection.
We present the expected levels in steady state for

on-hand inventory, LT and backorder. We utilise the
METRIC method [25] to approximate these levels.
[30] presented an exact procedure for deriving steady
state levels for on hand inventory and backorder at
the second echelon. However this procedure is com-
putationally burdensome and not ideal for large opti-
misation problems. To ease computation, researchers
have proposed various approximations. The MET-
RIC method uses Palm’s theorem [31] to find an ap-
proximate distribution for orders in replenishment at
each facility in the lower echelon. This is done by
means of a Poisson distribution with corresponding
mean. METRIC approximation ignores the depen-
dence of successive lead times from the top echelon
to facilities in the lower echelon. The lead times are
actually dependent on the inventory situation at the
top echelon. Another important approximation was
proposed by [30]. He approximated the number of
outstanding orders in the lower echelon facilities by a
negative binomial distribution comprising of two pa-
rameters, which are the corresponding mean and vari-
ance. METRIC approximation, in general, is appro-
priate as long as each lower echelon facility demand is

low compared to the total system demand. The MET-
RIC approximation will work well for a system with
many facilities in the lower echelon, this reduces the
dependence between successive lead times to the top
echelon [2]. Thus the METRIC approximation is ap-
propriate for the system considered in this study.

In this system each customer’s demand follow a
Poisson process, hence the demand process at each
service center is also Poisson because it is an aggre-
gation of independent Poisson processes. We assume
that the SVCs and plant are controlled with an order-
up-to policy. This implies that arrival process for the
plant’s demand is also Poisson. [2] derived expected
inventory and backorder levels in steady state for the
plant, we state their result and give a new proof.

Proposition 2.2.1
1. In steady state the plant’s expected backorder

level is given by

B0 = I0 − S0 + E[N0], (10)

2. In steady state the plant’s expected inventory
level is given by

I0 = S0 − E[N0] +B0. (11)

proof
Individual customer arrival process at each SVC is
Poisson. The aggregation of Poisson processes at
each SVC imply that the demand process at each SVC
is also Poisson. Controlling each SVC with the (S-
1,S) policy implies that replenishment requests at the
plant arrive one at a time. Thus, the plant’s demand
arrival process is Poisson and possesses the proper-
ties of a Markovian queue. The balance equation for
a Markovian queue imply that steady state inflow is
equal to steady state outflow. The steady state inflow
to the plant is denoted by E[N0]. S0 ≥ I0 by defi-
nition and the steady state expected number of plant
demand fulfilled from on-hand inventory is S0 − I0
. The steady state expected number of plant demand
satisfied from backorder is represented byB0. There-
fore steady state expected outflow is S0 − I0 + B0.
Hence the balance equation of this system is

E[N0] = S0 − I0 +B0 (12)

Thus
I0 = S0 − E[N0] +B0. (13)

and
B0 = I0 − S0 + E[N0]� (14)

Furthermore, [2] showed that the plant backorder and
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inventory levels in steady state can also be given re-
spectively as

B0 = E[N0]−
S0−1∑
s=0

[1− F0(s)], (15)

and

Ī0 =

S0−1∑
s=0

F0(s) (16)

where

F0(s) =

s∑
m=0

P{N0 = m}

.

For variety of manufacturing queuing systems,
plugging in the long-run probabilities into the for-
mulas above readily give the expected levels for the
plant’s backorder and on-hand inventory [7].

For an M/M/1 queue, [32] showed the expected
levels for plant backorder and on-hand inventory in
steady state to be

B0 =
ρS0+1

1− ρ
(17)

I0 = S0 −
ρ

1− ρ
(1− ρS0) (18)

By Little’s law, the expected plant response time
is given by

W0 =
ρS0+1

λ0(1− ρ)
(19)

In this subsection, we treat each pool as a single fa-
cility. This makes our problem have a structure sim-
ilar to the problems considered by [2] and [7], with
the plant at the top echelon and the pools at the lower
echelon. The demand at each pool is Poisson, by the
aggregation of the demand processes of all SVCs in
the pool. Pool demand is fulfilled either through on-
hand inventory or through backorders.

We assume identical stock levels Syz for all SVCs
in pool z. Hence the pool stock level is given by Sz =
|z|Syz , where |z| represents the number of SVCs in
pool z. The pool expected inventory level in steady
state is

Iz =

|z|Syz−1∑
s=0

(|z|Syz − s)P{Nz = s}

or

Iz =

|z|Syz−1∑
s=0

Fz(s) (20)

where

Fw(z) =

s∑
m=0

P{Nz = m}

The following proposition establishes the steady state
expected pool backorder level.

Proposition 2.2.2
The expected pool backorder level in steady state is

Bz =
λz

λ0

ρS0+1

1− ρ
+ λzαz − |z|Syz +

|z|Syz−1∑
s=0

Fz(s)

(21)
proof

Backorders can only take place inPoolz if every SVC
in that pool experience a stockout situation at the same
time, this follows from the assumption of instanta-
neous transshipment times. Then the expected pool
backorder level in steady state is

Bz = E[Nz]−
|z|Syz−1∑

s=0

[1− Fz(s)] (22)

= E[Nz]− |z|Syz +

|z|Syz−1∑
s=0

Fz(s)

Thus, the distribution of pool z outstanding orders
,Nz , in steady state, is needed before inventory and
backorder expected levels can be determined. At any
given time t, total number of pool z’s outstanding
orders comprises of:
(a) backorders at the plant emanating from pool z at
t − αz (this amount was in backorder status at time
t− αz , implying that they were not instantly shipped
out to pool z. Thus, they will not get to pool z prior
to t) and
(b) quantity of fresh arrivals in (t− αz, t).

The queue discipline for order processing at the
plant is First Come First Served, thus, we can ran-
domly split plant backorders [30]. The implication
of this is that the probability a backorder at the plant
emanated from pool z is proportional to the demand
rate at pool z. Pool z’s expected backorder value is
(λz

λ0
)B0. Given a time interval length of αz , the long

term average of fresh arrivals in αz is λzαz . There-
fore, the expected value ofNz in steady state is given
by:

E[Nz] =
λz

λ0
B0 + λzαz =

λz

λ0

ρS0+1

1− ρ
+ λzαz (23)
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Therefore

Bz =
λz

λ0

ρS0+1

1− ρ
+ λzαz − |z|Syz +

|z|Syz−1∑
s=0

Fz(s)

(24)
�

Demand faced at each SVC is fulfilled instantly
through on hand inventory if the SVC has a positive
inventory level. If the inventory level is zero, the de-
mand arrival at the SVC is also satisfied instantly via
LT from any other available SVC in same pool with
positive inventory level. In the event that all SVCs in
the pool have non-positive inventory levels, then the
demand is backordered. So SVC demand is satisfied
from any one of inventory on hand, LT, and backo-
rder.

The next result determines the steady state rela-
tionship between inventory level, LT level and back-
order level at a SVC. This result builds on work done
by [2] and [32].

Proposition 2.2.3
1. The steady state expected inventory level at SVC

y in pool z is

Iyz = Syz − E[Nyz] + Tyz +Byz (25)

2. The steady state expected backorder level at SVC
y in pool z is

Byz = Iyz − Syz + E[Nyz] + Tyz (26)

3. The steady state expected LT level at SVC y in
pool z is is

Tyz = Iyz − Syz + [Nyz]− Tyz (27)

proof

Iyz =

Syz−1∑
s=0

(Syz − s)P{Nyz = s}

= Syz

Syz−1∑
s=0

P{Nyz = s} −
Syz−1∑
s=0

sP{Nyz = s}

= Syz(1−
∞∑

s=Syz

P{Nyz = s})− (

∞∑
s=0

sP{Nyz = s})

−
∞∑

s=Syz

sP{Nyz = s})

= Syz − Syz

∞∑
s=Syz

P{Nyz = s}

− (E[Nyz]−
∞∑

s=Syz

sP{Nyz = s})

= Syz − E[Nyz] +

|z|Syz∑
s=Syz

(s− Syz)P{Nyz = s}

+

∞∑
s=|z|Syz+1

(s− |z|Syz)P{Nyz = s}

= Syz − E[Nyz] + Tyz +Byz

This proves (25). Making Byz and Tyz the subject of
the formula yield (26) and (27) respectively.
The next proposition gives the SVC steady state ex-
pressions for on hand inventory, backorder and LT.

Proposition 2.2.4
1. The steady state expected inventory level at each

SVC is

Iyz =

Syz−1∑
s=0

(Syz − s)P{Nyz = s} (28)

2. The steady state expected backorder level at each
SVC is

Byz =
λyz

λ0

ρS0+1

1− ρ
+ λyzαw

+
λyz

λw

|z|Syz−1∑
s=0

Fz(s)− |z|Syz

 (29)

3. The steady state expected LT level at each SVC
is
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Tyz =

Syz−1∑
s=0

Fyz(s)− Syz

− λyz

λw

|z|Syz−1∑
s=0

Fz(s)− |z|Syz

 (30)

where

Fyz(s) =

s∑
m=0

P{Nyz = m}

and

Fz(s) =

s∑
m=0

P{Nz = m}

proof The proof for SVC inventory steady state
level is similar to that of the steady state expected pool
inventory level

Iyz =

Syz−1∑
s=0

(Syz − s)P{Nyz = s}

Iyz =

Syz−1∑
s=0

Fyz(s) (31)

By the model assumptions, backorders can only
occur if all SVCs in a pool are out of stock. Let Sz =
|z|Syz be the total base stock level of the pool z. Then
the steady state expected backorder level at each SVC
in Poolz is

Byz=

(
λyz

λz

)
Bw (32)

Byz =

(
λyz

λz

)(
λz

λ0

ρS0+1

1− ρ
+ λzαz

+

|z|Syz−1∑
s=0

Fz(s)− |z|Syz


hence

Byz =
λyz

λ0

ρS0+1

1− ρ
+ λyzαz

+
λyz

λz

|z|Syz−1∑
s=0

Fz(s)− |z|Syz

 (33)

The behaviour of a Markovian queue in steady
state along with the implications of using the (S-1,S)

policy help to determine LT level at SVCs. The bal-
ance equation for the SVC is

Tyz +Byz + Syz − Iyz = E[Nyz] (34)

The expected number of requests filled from on-
hand inventory is given by Syz − Iyz

Hence, the distribution in steady state of orders
outstanding ,Nyz , defined as the quantity of orders
in line and in service at the SVC, is needed in order to
ascertain the inventory, backorder and transshipment
levels.

The quantity of unfulfilled orders from a SVC at
a given time t, comprises of:
(a) plant backorders at time t − αz which emanated
from the SVC (these orders won’t get to the SVC
before t)
(b) the quantity of fresh order arrivals in (t− αz, t).

Since First Come First Served is the plant’s queue
discipline, we can randomly disaggregate plant back-
orders [30]. Consequently, the probability a backo-
rder at the plant emananted from a particular SVC is
proportional to the demand rate at that SVC. The ex-
pected backorder value in steady state for a SVC is
given by

λyz

λ0
B0.

The expected fresh order arrivals during a time in-
terval of length αz is λzαz . Consequently, the ex-
pected value of Nyz in steady state is given by:

E[Nyz] =
λyz

λ0

ρS0+1

1− ρ
+ λyzαw (35)

Hence

Tyz = E[Nyz] + Iyz − Syz −Byz (36)

=
λyz

λ0

ρS0+1

1− ρ
+ λyzαz +

Syz−1∑
s=0

Fyz(s)− Syz

(37)

− λyz

λ0

ρS0+1

1− ρ
− λyzαw − (

λyz

λz
)

|z|Syz−1∑
s=0

[1− Fz(s)]

Therefore
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Tyz =
λyz

λz

|z|Syz−1∑
s=0

[1− Fz(s)]−
Syz−1∑
s=0

[1− Fyz(s)]

(38)

=

Syz−1∑
s=0

Fyz(s)− Syz

−

λyz

λz
(

|z|Syz−1∑
s=0

Fz(s)− |z|Syz)


Note
|z|Syz−1∑

s=0

Fz(s)−|z|Syz = −
|z|Syz−1∑

s=0

[1−Fz(s)] (39)

�
Following METRIC method, we derive approxi-

mations for outstanding orders at the pool and SVCs
to be

P [Nz = m] =
eλzLz(λzLz)

m

m!
(40)

and

Fz(s) =

s∑
m=0

eλzLz(λzLz)
m

m!
(41)

In the above, Lz is the expected replenishment lead
time which consists of expected response time of the
plant and the delivery lead time:

Lz = W0 + αz =
ρS0+1

λ0(1− ρ)
+ αz (42)

Similarly for SVC

P [Nyz = m] =
e−λyzLz(λyzLz)

m

m!
(43)

and

Fyz(s) =

s∑
m=0

e−λyzLz(λyzLz)
m

m!
(44)

In the above, Lz is the expected replenishment lead
time which consists of expected response time of the
plant and the delivery lead time. Note that Lz here
is the same as that for the pool; this is because it is
assumed that lateral transshipment between SVCs in
a pool is instantaneous.

Substituting the expressions for Iyz , Byz and Tyz

into our model gives the following reformulation,
which shows the true structure of the problem.

min
∑
z∈Z

∑
y∈Y

(hyz + qyz)

Syz−1∑
s=0

Fyz(s)− qyzSyz

+ λyz

(
pyzρ

S0+1

λ0(1− ρ)
+ pyzαz

)
(45)

+(pyz − qyz)
λyz

λz

|z|Syz−1∑
s=0

Fz(s)− |z|Syz


+ h0[S0 −

ρ

1− ρ
(1− ρS0)]

Subject to

Syz ≤ Cyz, for each, y ∈ Y (46)
Sz ≤ Cz = |z|Cyz, for each, z ∈ Z (47)
S0 ≤ C0 (48)[

ρS0+1

λ0(1− ρ)
+ αz − τ

]
λyz ≤

λyz

λz

|z|Syz−1∑
s=0

[1− Fz(s)]

(49)
Syz, Sz, S0 ≥ 0 integer , for each y ∈ Y (50)

(49) can also be written as[
ρS0+1

λ0(1− ρ)
+ αz − τ

]
≤
∑Sz−1

s=0 [1− Fz(s)]

λz

A close inspection shows that the model is a mixed
integer programming problem.

3 Model Properties
In this section, we exploit the structure of the model
to highlight some of it’s properties. The model refor-
mulation obtained in the previous section is solvable
using GAMs. Thus, there is no urgency on our part to
find heuristic solutions for our model. However, the
properties highlighted in this section are steps that can
lead to future development of heuristic solutions.

3.1 Lagrange relaxed solution
The existence of capacity constraint, in addition to our
assumption of low system demand, indicate that the
stock levels required to ensure the satisfaction of a
desired service level lies within a small range, which
has the capacity as its upper bound. [33] and [7] ex-
ploited similar properties to develop solution algo-
rithms which enumerated over all feasible points. For
this model, the capacity constraint on the plant, im-
plies that a number of problems can be solved where
the base stock level at the plant is fixed to each feasi-
ble value. The solution with the least cost is the orig-
inal problem’s optimal solution. When S0 is fixed,
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terms dependent on just S0 are treated as constants.
This property, makes it easy to break down the model
into smaller problems.

The reformulation of the model does not give any
obvious clue on the properties or structure of the
model. Thus, there is need to utilise a decomposition
technique to decompose the model. Lagrange relation
has been shown to be efficient for problemswith com-
plicating constraints. Hence, we use Lagrange relax-
ation to decompose our model. With S0 and Syz are
fixed, we observe that the complicating constraint is
the response time constraint. Thus, we relax the ser-
vice constraints (49) in the restricted problem so as
to decompose the model and further exploit it’s struc-
ture. Using γyz to denote the corresponding dual mul-
tiplier for (49), the following Lagrangian Dual prob-
lem is obtained:

max
γ≥0

min
∑
z∈Z

∑
y∈Y

(hyz + qyz)

Syz−1∑
s=0

Fyz(s)− qyzSyz

+ (pyz − qyz + γyz)
λyz

λz

|z|Syz−1∑
s=0

Fz(s) (51)

− λyz

λz
(pyz − qyz + γyz)|z|Syz

+
(pyz + γyz)ρ

S0+1

λ0(1− ρ)
λyz + (pyzαz + γyzαz − γyzτ)λyz

}
Subject to

Syz ≤ Cyz, for each,y ∈ Y, z ∈ Z (52)
S0 ≤ C0 (53)

Syz, Sz, S0 ≥ 0 integer , for each,y ∈ Y, z ∈ Z(54)

The objective function (55) can be rewritten as

max
γ≥0

min
S

∑
z∈Z

∑
y∈Y


Syz−1∑
s=0

[(hyz + qyz)Fyz(s)− qyz]

(55)

+ (pyz − qyz + γyz)
λyz

λz

|z|Syz−1∑
s=0

(Fz(s)− 1)

+

(
(pyz + γyz)ρ

S0+1

λ0(1− ρ)
+ (pyzαz + γyzαz − γyzτ)

)
λyz

}
Lagrange relaxation decomposes the problem by
SVCs and associated pools. The decomposed prob-
lem is

max
γ≥0

min
S

Syz−1∑
s=0

[(hyz + qyz)Fyz(s)− qyz] (56)

+ (pyz − qyz + γyz)
λyz

λz

|z|Syz−1∑
s=0

(Fz(s)− 1)

+

(
(pyz + γyz)ρ

S0+1

λ0(1− ρ)
+ (pyzαz + γyzαz − γyzτ)

)
λyz

Subject to

Syz ≤ Cyz for each,y ∈ Y, z ∈ Z (57)
Syz integer , for each,y ∈ Y, z ∈ Z (58)

The constraints of the decomposed model depends
on only Syz . We proceed to show that the objec-
tive function is convex with respect to Syz and Sz .
Convexity is desirable property for optimisationmod-
els because it guarantees the existence of a global
minimum solution. Recall that |z|Syz = Sz . Let
K(Syz, Sz) represent the terms depending entirely on
Syz and Sz , and let△Syz

(K(Syz, Sz)) denote the first
difference ofK(Syz, Sz) with respect to Syz .

K(Syz, Sz) =(hyz + qyz)

Syz−1∑
s=0

Fyz(s)− qyzSyz

+ (pyz − qyz + γyz)
λyz

λz
(

Sz−1∑
s=0

(Fz(s)− 1))

(59)

△Syz
(K(Syz, Sz)) = K(Syz + 1, Sz)−K(Syz, Sz)

= (hyz + qyz)Fyz(Syz)− qyz
(60)

△Syz
(△Syz

(K(Syz, Sz))) = △Syz
(K(Syz + 1, Sz))

−△Syz
(K(Syz, Sz))

= (hyz + qyz)(Fyz(Syz + 1)− Fyz(Syz))

= (hyz + qyz)(

Syz+1∑
m=0

P{Nyz = s} −
Syz∑
m=0

P{Nyz = s})

= (hyz + qyz)P{Nyz = Syz + 1} (61)

△Sz
K(Syz, Sz) = K(Syz, Sz + 1)−K(Sz)

= (pyz − qyz + γyz)
λyz

yz
(Fz(Sz)− 1)

= −(pyz − qyz + γyz)
λyz

λz
[1− Fz(Sz)] < 0

(62)
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△Syz
(△Sz

K(Syz, Sz)) = 0 (63)
Similarly,

△Sz
(△Syz

K(Syz, Sz)) = 0 (64)

△Sz
(△Sz

K(Syz, Sz)) = △Sz
K(Syz, Sz + 1)

−△Sz
K(Syz, Sz)

= (pyz − qyz + γyz)
λyz

λz
(Fz(Sz + 1)− Fz(Sz))

+ (pyz − qyz + γyz)
λyz

λz
(−1 + 1)

= (pyz − qyz + γyz)
λyz

λz
(

Sz+1∑
m

P [Nz = m]

−
Sz∑
m

P [Nz = m])

= (pyz − qyz + γyz)
λyz

λz
(P [Nz = Sz + 1]) > 0

(65)

Let H1 = △Syz
(△Syz

K(Syz, Sz)),
H2 = △Syz

(△Sz
K(Syz, Sz)), H3 =

△Sz
(△Syz

K(Syz, Sz)) and H4 =
△Sz

(△Sz
K(Syz, Sz)) The Hessian Matrix of

the problem Hess(Syz, Sz) is

Hess(Syz, Sz) =

(
H1 H2

H3 H4

)
(66)

△Syz
(△Syz

K(Syz, Sz)) > 0, △Sz
(△Sz

K(Syz, Sz))
therefore det(Hess(Syz, Sz)) > 0. This implies
that the Hessian of the problem is strictly positive
definite with respect to Syz and Sz , thus the problem
is convex with respect to Syz and Sz .

Remark: We utilised Lagrange relaxation to decom-
pose the model and have showed that the decomposed
problem is convex. The solution of the relaxed prob-
lem is only a lower bound to the solution of the
initial problem. We proceed to show that the primal
problem is convex for fixed values of S0.

Proposition 3.1.1
For fixed values of S0, the primal problem is a convex
optimisation problem.

proof
We showed convexity of the relaxed problem for fixed
multiplier values. Thus, the objective function of the
relaxed problem is convex for γvw = 0. Also, the
objective function of the relaxed problem is equal to

the objective function of the model with LT when
γyz = 0. Hence the objective function of the model
with LT (primal problem) is convex. With S0 fixed,
the response time constraint depends only on the vari-
able Sz = |z|Syz and can be written as

Lz − τ +
1

λz

Sz−1∑
s=0

(Fz(s)− 1) ≤ 0

Let

J̄(Sz) = Lz − τ +
1

λz

Sz−1∑
s=0

(Fz(s)− 1)

△J̄(Sz) = J̄(Sz + 1)− J̄(Sz)

=
1

λz
(Fz(Sz)− 1)

= − 1

λz
(1− Fz(Sz − 1)) < 0

where,△J̄(Sz) is the first difference of J̄(Sz).

△2J̄(Sz) = △J̄(Sz + 1)−△J̄(Sz)

=
1

λz
(Fz(Sz + 1)− Fz(Sz))

=
1

λz

(
Sz+1∑
m

P [Nz = m]−
Sz∑
m

P [Nz = m]

)
=

1

λz
(P [Nz = Sz + 1]) > 0

where, △2J̄(Sz) is the second difference of J̄(Sz).
Since, △2J̄(Sz) > 0, we say that our service con-
straint is convex. We haved shown that the objec-
tive function of our model and the inequality con-
straint (service constraint) are convex when S0 is
fixed. Thus, for fixed values of S0, the primal prob-
lem is convex with respect to Sz .�

Convexity implies that our model can be solved
using convex optimisation solvers

3.2 Optimal base stock level for service
centers

Having exploited the properties of Model I by means
of Lagrange relaxation, we proceed to determine the
nature of the optimal solution. Here, the optimal so-
lution is the basestock level that gives minimum cost
and also satisfies the service or response time con-
straint.

Let the terms of the objective function of the pri-
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mal problem (45) that depends on Syz be given as:

H(Syz) = (hyz + qyz)

Syz−1∑
s=0

Fyz(s)− qyzSyz

+(pyz − qyz + γyz)
λyz

λz
(

|z|Syz−1∑
s=0

(Fz(s)− 1)) (67)

To determine optimal Syz without response time con-
straint, let △H(Syz) be the change in the objective
value due to an increase in base stock level from Syz

to Syz + 1. Then

△H(Syz) = H̄(Syz + 1)−H(Syz)

= (hyz + qyz)Fyz(Syz)− qyz

+ (pyz − qyz + γyz)
λyz

λz

|z|Syz+|z|−1∑
s=|z|Syz

(Fz(s)− 1)


(68)

△H(Syz) = Fyz(Syz)−

(qyz + pyz − γyz)λyz
∑|z|Syz+|w|−1

s=|z|Syz
[1− Fz(s)] + λzqyz

λz(hyz + qyz)
(69)

When△(Syz) < 0, increasing Syz by 1 will cause
a decrease in cost. Also, by definition Fyz(Syz) is
monotone increasing in Syz and lies between 0 and 1.
Hence the unconstrained optimal Syz can be found as
follows:
Fix S0 = C0 and follow the following steps to deter-
mine a local minimum cost for S0 = C0.

1. If△H(Cyz) ≤ 0, then Syz = Cyz remains.

2. If△H(Cyz) > 0, select Syz as the largest integer
such that△H(Syz) ≤ 0.

Decrease the value of S0 by one and follow the steps
above. To get all local minimum solutions, the pro-
cess is repeated until S0 reaches zero. We pick the
minimum of all local solutions, this becomes the
global minimum solution.

The optimal Syz with service constraint can be
found as follows:
Fix S0 = C0 and follow the following steps to deter-
mine a local minimum cost for S0 = C0.

1. If △H(Cyz) ≤ 0 and [Lw − τ ]λyz ≤
λyz

λz

∑|z|Cyz−1
s=0 [1 − Fz(s)] then Syz = Cyz re-

mains.

2. If △H(Cyz) > 0 select Syz as the largest inte-
ger such that△H(Syz) ≤ 0 and [Lz − τ ]λyz ≤
λyz

λz

∑|z|Syz−1
s=0 [1− Fz(s)]

Decrease the value of S0 by one and follow the steps
above. To get all local minimum solutions, the pro-
cess is repeated until S0 reaches zero. We pick the
minimum of all local solutions, this becomes the
global minimum solution.

The optimal solution to the model can be obtained
using GAMS software, thus there is no urgency to im-
mediately develop any specialised heuristics for solv-
ing it.

4 Computational
Experiments
In this section, computational experiments which

investigate properties of the model are designed. We
utilise two data sets made up of of 37 nodes and 109
nodes. The 37 nodes represent the 36 state capitals
and capital city in Nigeria. The 109 nodes represent
the 3 most populous cities in each of the 36 states and
the capital city. The population of each city was ob-
tained from the 2006 census. Nodes in same geopolit-
ical zone form a pool and LT is permitted only among
SVCs in the same pool. Demand rates are obtained by
multiplying the population at a node by 10−5. The de-
mand rate for each node is constrained to be no more
than 10 for nodes with very large population. The
pure lead time for transportation from the plant to pool
z is set to be the maximum of the transportation lead
times from the plant to SVCs in pool z.

4.1 Model performance
Here we compare our model with the model with-

out LT. This test is conducted with the 37 node and
109 node data sets for UR= (0.9, 0.5) and RTR =(
0.4, 0.5, 0.6), where, UR and RTR are abbreviations
for utility rate (ρ) and response time requirement (ρ),
respectively. We take note of the objective function
value of our model (OBJ LT) and the objective func-
tion value of the model without LT (OBJ WLT). The
model without LTwas obtained from the model by [2]
by imposing it with our pooling criterion. The pool-
ing criterion implies that the model with LT can be
partitioned into sub problems by geographical region.
Hence, a fair comparison will be to compare with a
model which is also a collection of sub problems by
geographical region. This idea follows from the pa-
per by [13] who partitioned the facilities into disjoint
pools, and considered one of such pools. Thus, the to-
tal expected cost of the system comprises of the sum
of the costs from all pools and the cost at the plant.

He divides the stock locations into pooling groups,
and focuses on one such group.
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Table 1: Model performance
S/N NODES UR RTR OBJ LT OBJ WLT
1 37 0.9 0.6 50848.58 533559.76
2 37 0.5 0.6 51343.16 55568.75
3 37 0.9 0.5 50848.58 53559.76
4 37 0.5 0.5 51343.16 55568.75
5 37 0.9 0.4 50848.58 53559.76
6 37 0.5 0.4 51343.16 55568.75
7 109 0.9 0.6 50483.05 50531.07
8 109 0.5 0.6 49730.65 55462.37
9 109 0.9 0.5 50483.05 50531.07
10 109 0.5 0.5 49730.65 55462.37
11 109 0.9 0.4 504483.05 50531.07
12 109 0.5 0.4 49730.65 55462.37

We summarise our results in Table 1. For all in-
stances tested, the total system cost of our LT model
was lower than that of the model without LT. This il-
lustrates the cost savings that can be achieved via the
incorporation of LT.

4.2 Effect of response time requirement and
base stock level

In this experiment we check the behaviour of the
model as the response time is varied. We make use
of the 37-node dataset and set ρ to 0.9. We vary re-
sponse time requirement values between 0.272 and
0.668. Figure 1 shows that expected cost remains sta-
ble with varying response time requirement values.
This occurs as a result of LT and pooling which en-
sure uniform response time constraint for all SVCs in
a pool. The implication of this is that, within feasi-
ble values, the decision maker can slacken or tighten
the response time requirement to fit into the contract
signed with a customer, and this will have negligible
effect on the expected cost. This will help decision
makers in two-echelon systems to know the bounds
to response times during negotiation with customers.

In order to test the effect of basestock level, we
utilise the 37 node dataset and set (ρ) to 0.9. In the
first case, we consider the effect of plant base stock
level on response time, Syz is fixed at 5, while S0

is varied between the feasible range. In the second
case, we consider the effect of SVC base stock level
on response time, S0 is fixed at 3 and the value of Syz

is varied within the feasible range. In all cases, the
minimum feasible response time requirement and the
corresponding expected costs are recorded. The ex-
pected costs and response time requirement are plot-
ted against the stock level.

In the first case, the difference between the largest
expected cost (attained at the maximum plant ca-
pacity) and the lowest expected cost (attained when
S0 = 1) is 1% of the lowest expected cost. Also,
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Figure 1: Effect of response time

for all instances tested, the difference between the ex-
pected cost for S0 = n and for S0 = n − 1 was no
more than 0.11% of the value of the expected cost
when S0 = n − 1. Thus, for this experiment, in-
crease in plant base stock level results to negligible
increase in expected cost and causes a decrease in the
minimum response time requirement. This is obvi-
ous from Figure 2. Figure 3, shows that increasing
SVC stock level results to an increase in expected cost
and causes no change in minimum response time re-
quirement. If the decision maker intends to reduce re-
sponse times to customers with minimum increase in
cost, she has to increase the plant base stock level. In
real life, the value of S0 is usually constrained by ca-
pacity. Comparing Figure 2 and Figure 3, it is obvious
that increase in plant base stock level is preferable for
achieving stable costs and minimum response time.
This follows because the decent in response time is
steeper when plant base stock is increased compared
to when SVC base stock is increased. Also, the as-
cent in expected cost is steeper when SVC base stock
is increased compared to when plant base stock is in-
creased.

5 Conclusion
In this study, we considered the integration of lat-
eral transshipment into an inventory system with two
echelons and a service time constraint across all faci-
ities. The service centers and plants use a continu-
ous review (S-1,S) policy for inventory management.
We formulated a two echelon inventory model for
our system and established the relationship between
inventory on-hand, lateral transshipment and backo-
rder, in steady state. We also determined steady state
expected levels for inventory on-hand, lateral trans-
shipment and backorder. The model was decomposed
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Figure 3: Effect of SVC base stock level

using Lagrange relaxation method. The model was
shown to be convex. The solution to the model was
found using GAMS. In all instances our model re-
turned lower costs when compared with the model
without lateral transshipment. From our results, in-
creasing the plant base stock level will cause a reduc-
tion in minimum response time to with slight increase
in cost. Our results show that a major effect of us-
ing lateral transshippment is that the expected cost re-
mains consistent when the response time is varied be-
tween its feasible points. Conclusively, results from
this study show that lateral transshipment is efficient
for achieving a balance between the desire to simul-
taneously minimize cost and maintain acceptable re-
sponse times in an inventory system with two eche-
lons and service constraints.

There are several possible extensions to this work.
Our pooling criterion is geographical, this just gave
us the opportunity to analyse the problem structure.
However, this might not be the optimal pooling crite-
rion for optimising cost and service; it is possible that
the closest facility which can fulfill a transshipment
request might be a facility in a different geographical
region (this scenario could arise for facilities in geo-
graphical regions which share same boundary). Thus,
a possible future research direction will be to explore
the problem using other pooling criteria, e.g. increas-
ing order of distance as in [23]. Also, our model as-
sumes that a transshipment source with positive on-
hand stock always releases inventory to satisfy trans-
shipment requests. [34] has considered cases where
not all inventory available in a facility are available
for transshipment. So, this work can be extended by
looking at a pooling rule that holds back inventory for
transshipment in order to hedge against future stock
out. Another limitation of this study is the assumption
of negligible lateral transshipment times. Thus, inves-
tigating the effects of non-negligible lateral transship-
ment on the system will be an interesting direction for
future research.
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